Three-dimensional Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
نویسندگان
چکیده
—Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle. We present a constant-time motion planning algorithm for steerable needles based on explicit geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and path competitivity are analyzed using analytic comparisons with shortest path solutions for the Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local path adaptation using null-space results from redundant manipulator theory. Finally, we discuss several ways to use and extend the inverse kinematics solution to generate needle paths that avoid obstacles.
منابع مشابه
3D Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics
Steerable needles can be used in medical applications to reach targets behind sensitive or impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an airplane with constant speed and pitch rate, zero yaw, and controllable roll angle.We present a constant-time motio...
متن کامل3D Motion Planning for Steerable Needles using Path Sets
INTRODUCTION Bevel-tipped flexible needles can be steered in soft tissue to clinical targets along curved paths in 3D while avoiding critical structures. Duty-cycled rotation [1] during insertion allows for control of the curvature of the needle. These capabilities of 3D steerable needles make it potentially suitable for applications such as deep brain stimulation (DBS) and drug delivery to bra...
متن کاملThe International Journal of Robotics Research
As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous th...
متن کاملRobert J . Webster III
As a flexible needle with a bevel tip is pushed through soft tissue, the asymmetry of the tip causes the needle to bend. We propose that, by using nonholonomic kinematics, control, and path planning, an appropriately designed needle can be steered through tissue to reach a specified 3D target. Such steering capability could enhance targeting accuracy and may improve outcomes for percutaneous th...
متن کاملConstant-Curvature Motion Planning Under Uncertainty with Applications in Image-Guided Medical Needle Steering
We consider a variant of nonholonomic motion planning for a Dubins car with no reversals, binary left/right steering, and uncertainty in motion direction. We apply our new motion planner to steerable needles, a new class of flexible bevel-tip medical needles that clinicians can steer through soft tissue to reach targets inaccessible to traditional stiff needles. Our method explicitly considers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 29 شماره
صفحات -
تاریخ انتشار 2010